濒危语言的用户努力在数字化介导的世界中蓬勃发展。我们开发了一种自动化方法,用于评估ISO 639认可的每种语言在数字语言支持方面的表现。该评估是基于从143个数字工具的网站上删除支持语言的名称,以代表数字技术可以支持语言的各种方式。该方法使用Mokken量表分析来生成可解释的模型,以量化数字语言支持并在全球范围内监视它。
translated by 谷歌翻译
Machine learning models rely on various assumptions to attain high accuracy. One of the preliminary assumptions of these models is the independent and identical distribution, which suggests that the train and test data are sampled from the same distribution. However, this assumption seldom holds in the real world due to distribution shifts. As a result models that rely on this assumption exhibit poor generalization capabilities. Over the recent years, dedicated efforts have been made to improve the generalization capabilities of these models collectively known as -- \textit{domain generalization methods}. The primary idea behind these methods is to identify stable features or mechanisms that remain invariant across the different distributions. Many generalization approaches employ causal theories to describe invariance since causality and invariance are inextricably intertwined. However, current surveys deal with the causality-aware domain generalization methods on a very high-level. Furthermore, we argue that it is possible to categorize the methods based on how causality is leveraged in that method and in which part of the model pipeline is it used. To this end, we categorize the causal domain generalization methods into three categories, namely, (i) Invariance via Causal Data Augmentation methods which are applied during the data pre-processing stage, (ii) Invariance via Causal representation learning methods that are utilized during the representation learning stage, and (iii) Invariance via Transferring Causal mechanisms methods that are applied during the classification stage of the pipeline. Furthermore, this survey includes in-depth insights into benchmark datasets and code repositories for domain generalization methods. We conclude the survey with insights and discussions on future directions.
translated by 谷歌翻译
为了解决逆问题,已经开发了插件(PNP)方法,可以用呼叫特定于应用程序的DeNoiser在凸优化算法中替换近端步骤,该算法通常使用深神经网络(DNN)实现。尽管这种方法已经成功,但可以改进它们。例如,Denoiser通常经过设计/训练以消除白色高斯噪声,但是PNP算法中的DINOISER输入误差通常远非白色或高斯。近似消息传递(AMP)方法提供了白色和高斯DEOISER输入误差,但仅当正向操作员是一个大的随机矩阵时。在这项工作中,对于基于傅立叶的远期运营商,我们提出了一种基于普遍期望一致性(GEC)近似的PNP算法 - AMP的紧密表弟 - 在每次迭代时提供可预测的错误统计信息,以及新的DNN利用这些统计数据的Denoiser。我们将方法应用于磁共振成像(MRI)图像恢复,并证明其优于现有的PNP和AMP方法。
translated by 谷歌翻译
神经网络和相关的深度学习方法目前处于用于分类对象的技术的前沿。但是,他们通常需要大量的时间和模型培训数据。他们学到的模型有时很难解释。在本文中,我们推进了FastMAPSVM(用于对复杂对象进行分类的可解释的机器学习框架),这是用于通用分类任务的神经网络的有利替代方法。 FastMAPSVM通过组合FastMap和SVM的互补强度,将支持矢量机(SVM)(SVM)的适用性扩展到具有复杂对象的域。 FastMap是一种有效的线性时间算法,该算法将复杂的对象映射到欧几里得空间中的指向,同时保留它们之间的成对域特异性距离。我们证明了FastMAPSVM在分类地震图的背景下的效率和有效性。我们表明,就精确,回忆和准确性而言,其性能与其他最先进的方法相当。但是,与其他方法相比,FastMAPSVM对模型培训的时间和数据量明显较小。它还提供了对象及其之间的分类边界的明显可视化。我们希望FastMAPSVM可行对于许多其他实际域中的分类任务。
translated by 谷歌翻译
我们描述了作为黑暗机器倡议和LES Houches 2019年物理学研讨会进行的数据挑战的结果。挑战的目标是使用无监督机器学习算法检测LHC新物理学的信号。首先,我们提出了如何实现异常分数以在LHC搜索中定义独立于模型的信号区域。我们定义并描述了一个大型基准数据集,由> 10亿美元的Muton-Proton碰撞,其中包含> 10亿美元的模拟LHC事件组成。然后,我们在数据挑战的背景下审查了各种异常检测和密度估计算法,我们在一组现实分析环境中测量了它们的性能。我们绘制了一些有用的结论,可以帮助开发无监督的新物理搜索在LHC的第三次运行期间,并为我们的基准数据集提供用于HTTPS://www.phenomldata.org的未来研究。重现分析的代码在https://github.com/bostdiek/darkmachines-unsupervisedChallenge提供。
translated by 谷歌翻译
Designing experiments often requires balancing between learning about the true treatment effects and earning from allocating more samples to the superior treatment. While optimal algorithms for the Multi-Armed Bandit Problem (MABP) provide allocation policies that optimally balance learning and earning, they tend to be computationally expensive. The Gittins Index (GI) is a solution to the MABP that can simultaneously attain optimality and computationally efficiency goals, and it has been recently used in experiments with Bernoulli and Gaussian rewards. For the first time, we present a modification of the GI rule that can be used in experiments with exponentially-distributed rewards. We report its performance in simulated 2- armed and 3-armed experiments. Compared to traditional non-adaptive designs, our novel GI modified design shows operating characteristics comparable in learning (e.g. statistical power) but substantially better in earning (e.g. direct benefits). This illustrates the potential that designs using a GI approach to allocate participants have to improve participant benefits, increase efficiencies, and reduce experimental costs in adaptive multi-armed experiments with exponential rewards.
translated by 谷歌翻译
Modelling and forecasting real-life human behaviour using online social media is an active endeavour of interest in politics, government, academia, and industry. Since its creation in 2006, Twitter has been proposed as a potential laboratory that could be used to gauge and predict social behaviour. During the last decade, the user base of Twitter has been growing and becoming more representative of the general population. Here we analyse this user base in the context of the 2021 Mexican Legislative Election. To do so, we use a dataset of 15 million election-related tweets in the six months preceding election day. We explore different election models that assign political preference to either the ruling parties or the opposition. We find that models using data with geographical attributes determine the results of the election with better precision and accuracy than conventional polling methods. These results demonstrate that analysis of public online data can outperform conventional polling methods, and that political analysis and general forecasting would likely benefit from incorporating such data in the immediate future. Moreover, the same Twitter dataset with geographical attributes is positively correlated with results from official census data on population and internet usage in Mexico. These findings suggest that we have reached a period in time when online activity, appropriately curated, can provide an accurate representation of offline behaviour.
translated by 谷歌翻译
Existing federated classification algorithms typically assume the local annotations at every client cover the same set of classes. In this paper, we aim to lift such an assumption and focus on a more general yet practical non-IID setting where every client can work on non-identical and even disjoint sets of classes (i.e., client-exclusive classes), and the clients have a common goal which is to build a global classification model to identify the union of these classes. Such heterogeneity in client class sets poses a new challenge: how to ensure different clients are operating in the same latent space so as to avoid the drift after aggregation? We observe that the classes can be described in natural languages (i.e., class names) and these names are typically safe to share with all parties. Thus, we formulate the classification problem as a matching process between data representations and class representations and break the classification model into a data encoder and a label encoder. We leverage the natural-language class names as the common ground to anchor the class representations in the label encoder. In each iteration, the label encoder updates the class representations and regulates the data representations through matching. We further use the updated class representations at each round to annotate data samples for locally-unaware classes according to similarity and distill knowledge to local models. Extensive experiments on four real-world datasets show that the proposed method can outperform various classical and state-of-the-art federated learning methods designed for learning with non-IID data.
translated by 谷歌翻译
This is paper for the smooth function approximation by neural networks (NN). Mathematical or physical functions can be replaced by NN models through regression. In this study, we get NNs that generate highly accurate and highly smooth function, which only comprised of a few weight parameters, through discussing a few topics about regression. First, we reinterpret inside of NNs for regression; consequently, we propose a new activation function--integrated sigmoid linear unit (ISLU). Then special charateristics of metadata for regression, which is different from other data like image or sound, is discussed for improving the performance of neural networks. Finally, the one of a simple hierarchical NN that generate models substituting mathematical function is presented, and the new batch concept ``meta-batch" which improves the performance of NN several times more is introduced. The new activation function, meta-batch method, features of numerical data, meta-augmentation with metaparameters, and a structure of NN generating a compact multi-layer perceptron(MLP) are essential in this study.
translated by 谷歌翻译
The existing methods for video anomaly detection mostly utilize videos containing identifiable facial and appearance-based features. The use of videos with identifiable faces raises privacy concerns, especially when used in a hospital or community-based setting. Appearance-based features can also be sensitive to pixel-based noise, straining the anomaly detection methods to model the changes in the background and making it difficult to focus on the actions of humans in the foreground. Structural information in the form of skeletons describing the human motion in the videos is privacy-protecting and can overcome some of the problems posed by appearance-based features. In this paper, we present a survey of privacy-protecting deep learning anomaly detection methods using skeletons extracted from videos. We present a novel taxonomy of algorithms based on the various learning approaches. We conclude that skeleton-based approaches for anomaly detection can be a plausible privacy-protecting alternative for video anomaly detection. Lastly, we identify major open research questions and provide guidelines to address them.
translated by 谷歌翻译